
RISC Microprocessors and Scientific Computing

David H. Bailey

RNR Technical Report RNR-93-004

March 26, 1993

Abstract

This paper discusses design features in currently available RISC microprocessors that

result in less-than-optimal sustained performance on large-scale scientific calculations. Rec-

ommendations for future designs are suggested.

The author is with the Numerical Aerodynamic Simulation (NAS) Systems Division at

NASA Ames R_earch Center, Moffett Field, CA 94035.

1. Introduction

Scientists accustomed to running large-scale, computationally intensive applications

have traditionally utilized conventional vector supercomputers, such as those manufac-

tured by Cray Research, Inc., Fujitsu or NEC. However, with the recent popularization of

RISC workstations, many of these same scientists are using their workstations not just to

edit their source codes and display their results, but to perform their computations as well.

Another avenue from which scientific computer users have been introduced to RISC proces-

sors, an avenue which is potentially very significant for the future of scientific computing,

is the recent incorporation of RISC processors into highly parallel supercomputers.

The reason for this interest is of course the recent sharp rise in the peak floating point

performance of RISC processors, and the expectation of continued increases in the future.

Indeed, on many scientific applications, particularly those that enjoy high levels of data

locality, RISC-based systems already feature superior sustained performance per dollar,

when compared with conventional vector computers. However, as we will see, not all

applications run so well on these systems. This phenomenon is analogous to the situation

in vector computing, where many scientific applications run quite well, but others do not.

RISC is an acronym for "reduced instructed set computer," a concept popularized a

few years ago by researchers at Stanford University, among other places. In this paper,

however, "RISC processor" will be used more loosely to designate any of the recently

developed high-performance floating-point processors. Indeed, it will be seen that the

issues raised herein do not have much to do with the basic concept of reduced instruction

set computing, but instead deal with other features of these processors.

In the following, 64-bit data is assumed in all discussion of performance rates. Thus,

for instance, Mflop/s denotes millions of 64-bit floating point operations per second, and

Mword/s denotes millions of 64-bit words per second.

2. Divide and Conquer

Several features common to many current RISC processors result in less-than-optimal

performance when systems incorporating these processors are used for scientific computa-

tions. One example of such a feature is the design of the divide operation.

The IBM RS6000 processor has an IEEE-compliant floating point divide operation,

which employs a Newton iteration scheme and requires 20 clock periods. The Hewlett-

Packard PA-RISC floating point divide also requires 20 clock periods. The MIPS R4400,

which is used in the new Challenge series workstations from Silicon Graphics, Inc., requires

36 clock periods. Of currently popular RISC processors, it appears that only the Sun

SuperSPARC can perform a floating point divide in under ten clock periods (see Table 1).

On the Intel i860, divisions are performed in software by means of a Newton iteration

scheme. This sequence requires 38 clock periods. If a true IEEE-compliant quotient is

required, an additional sequence of operations is required that increases this cost by a

factor of five, to approximately 190 clock periods. The IEEE-compliant divide operation

on the DEC Alpha processor requires 63 clock periods. It is not known if a reasonably

accurate approximate result can be obtained in fewer clock periods on the Alpha.

It shouldbementionedthat the abovefiguresarebasedon scalar,non-pipelineddivide
operations. Presumablythe RISC processorscould deliver improveddivide performanceif
a seriesof divisions could be pipelined, in the sameway that adds and multiplies areoften
pipelined. Regrettably, however,it appearsthat existing compilerson RISC systemsdo
not exploit this possibility.

By contrast, the Cray-2, Cray Y-MP and C-90processorscan perform vectorizeddivi-
sions at a rate of one result every four clock periods. One important disadvantageof the
current Cray systemsis that they do not perform IEEE arithmetic. Further, the results
of the divide sequenceare only guaranteedto 46 of 48 bits, and this fact results in some
rather annoyinganomalies(suchas7.0/7.0 _ 1.0). Most usersof Cray systemshavefound
these "features" acceptable,although there aresomesituations whereCray's arithmetic is
problematic.

A processorof the NEC SX-3 can perform one division every two clock periods, in
vector mode,and the resultsare fully accurate-- they are not merely the product of the
numeratorwith an approximation to the reciprocalof the denominator. On the other hand,
one SX-3 CPU can perform eight floating point adds and eight floating point multiplies
per clock period, so that its peak divide performanceis 1/16 that of its peak add or peak
multiply performance.While this ratio is significantly worsethan on the Cray systems,it
is still better than on most of the RISC systems.

How important is the performanceof the divide operation in scientific computation? It
is true that many important inner computational loops have no divide operations what-
soever. In most other cases,divisions can be moved out of inner loops, either by the
programmeror by optimizing compilers. But what about loopswherethe divisors are not
constant, and therefore cannot bemovedout of the loop? And evenin thosecaseswhere
divide operations can be movedout of inner loops, unlessthe inner loop length is fairly
large the cost of the singledivide operation can still dominate the cost of the loop if the
processorrequiresscoresof clockperiods to completeit.

An exampleof an important divide-intensive numerical algorithm is the tridiagonal
solverof ADI schemes,which areusedfor certain partial differential equation problems. Of
9n floating point operations in the inner loop, n of these are floating-point divisions. Such

considerations are not entirely academic. Colleagues of the author at NASA Ames Research

Center, who developed and implemented the NAS Parallel Benchmarks [6, 7], have found

that the slow performance of the divide operation on the Intel i860 processor significantly

reduces the sustained performance of the iPSC/860 system on the block tridiagonal and

scalar pentadiagonal benchmarks.

The lack of fast hardware for integer division may also become a serious issue when

RISC processors are used in distributed memory parallel computers, a path now taken by

Intel, Thinking Machines, Cray and others. Consider a one-dimensional array of length

7168 = 7 x 1024 mapped to a 1024 processor machine. Element Aj is located at offset

(jmod7) on processor (j + 7). Hence the need for a fast integer divide operation. Partly

for this reason, Cray has proposed a programming model for an upcoming highly parallel

system that places somewhat artificial limits on array distributions [12].

3

3. The Cache Flow Problem

All of the current selection of high-performance RISC microprocessors employ a cache

memory system and some scheme for virtual memory management. The objective is to

provide the illusion of a very large memory, possibly extending to disk, all of which is

readily accessible by the processor for high throughput performance. Bandwidth between

this cache memory and the processing units is generally quite high. Bandwidth between

main memory and the processing units typically is significantly lower.

The Intel i860, for example, has an eight Kbyte internal data cache. It can, in a

single clock period, transfer 16 bytes, or two operands, between the internal cache and

two adjacent registers. Concurrently with this operation it can perform floating point

operations on data in other registers. With a clock rate of 40 Mhertz, the theoretical

peak performance is 60 Mflop/s, and its cache memory bandwidth is 80 Mword/s. This

ratio of roughly one operand per operation has been found to be acceptable for scientific

computing. This is the ratio for the MasPar MP-2 and the vector processors of the TMC

CM-5. Cray systems can fetch two operands and store one operand every clock period,

during which time two floating point operations can be performed. Thus its ratio is 1.5.

The performance of the i860 on data in main memory is quite another matter. From

main memory it can only load one 64-bit word every two clocks, or store one word every

three clocks. These figures assume a long vector operation using a particular machine

instruction. Conventional loads and stores from main memory require even more time.

Thus there is a ratio of at least six between achievable cache and main memory bandwidth

figures. This is a limitation of the processor and cannot be corrected with a secondary
cache.

This limited main memory bandwidth is reflected in less-than-stellar performance of

the i860 on real scientific codes. Figure 1 (solid line) gives performance rates of Fortran-

coded DAXPY loops of different lengths (assuming the start of the data vectors are in

cache). This code was compiled with the latest version of the Intel-supported Portland

Group compiler, using 04 optimization. The performance is roughly 12 Mflop/s until the

vector length is sufficiently large that the two vectors cannot be held entirely in cache,

at which time it drops sharply to only about four Mflop/s. The dashed line in Figure 1

give performance rates with the Mvect option, which utilizes an instruction that bypasses

cache. As can be seen, this results in improved long vector performance, but poorer short

vector performance. Even with this option, long vector performance is only about 60% of

the short vector, cached data performance.

For other types of Fortran loops typical of scientific application codes, the results are

similar. For instance, on the NAS Parallel Benchmarks [7], the 128-node Intel iPSC/860

system typically achieves only about five percent of its peak multiprocessor performance.

This is partly due to contention in the network, but the other principal factor is low single

node performance, typically only four to six Mflop/s from Fortran or C. While further

improvements in the compiler can he expected to marginally improve these rates, there

seems little hope that sustained rates of more than eight to ten Mflop/s will ever be achieved

on the main body of real scientific codes [11].

4

12

10

/
/

s .. _ s_ "'°'"

0 , , i , , ,,,,,, i i , ,,,,,, , , I ill,

101 10 2 10 3 10 4 10 5

Length

Figure 1:i860 Performance on a Fortran DAXPY Loop (Mflop/s)

The next edition of the i860, known as the i860XP, improves the main memory band-

width by means of burst load and store operations. It remains to be seen how much actual

improvement will be realized by the user, since it appears that the initial i860XP Fortran

and C compilers are not able to exploit these special instructions.

The situation is somewhat better with other RISC processors. The IBM RS6000 series

features a larger cache (64 Kbytes on the model 370). Here the ratio between internal

cache bandwidth and main memory is unity (one operand per clock period), and both of

these figures are one-half the floating point computation. Partly as a result of this excellent

main memory bandwidth, its resulting Linpack 100 x 100 performance rate is a respectable
26 Mflop/s.

However, the four-way associative design of the IBM RS6000 cache produces some

rather odd behavior with respect to strides. Programmers of cache-based systems are

prepared for slowdown anytime the strides of memory accesses are not unity, since these

result in poor cache utilization. But few programmers are aware that additional slowdowns

result for certain strides such as 73 or 102. It turns out that such strides result in poor

performance because they are very nearly simple fractions of 512 [5].

The Hewlett Packard PA-RISC processor runs at 99 Mhertz. It has a large cache,

typically one Mbyte, and it can fetch or store one operand every clock period (after the

first). However, data in main memory data can be fetched or stored at a rate of only one

word every three clock periods. As with several of the other processors, the PA-RISC can

perform up to two floating point operations every clock period.

The R4400 processor, which is used in some new Silicon Graphics workstations, runs

at 100 Mhertz. It can fetch or store a operand from the internal cache every clock period.

It has an external cache, typically one Mbyte, from which it can access a word every other

5

Processor

Cray C-90/1

Cray Y-MP/1

IBM RS/6000

DEC Alpha

HP PA-RISC

Intel i860

SGI (R4400)

SuperSPARC

Clock Divide

(Mhz) (CP)
240 4

166 4

62 20

150 63

99 20

4O 190

100 36

4O 7

Cache BW

(MW/s)

62

150

99

8O

100

40

Memory BW

(MW/s)
1440

500

62

37

33

16

50

40

Peak Perf.

(ME/s)

960

333

125

150

198

60

50

40

Linpack

(MF/s)

387

161

26

3O

41

l0

17

Table 1: Performance Characteristics of RISC Processors

clock period, which is the same rate for data in main memory. It can perform a floating

point operation every other clock period, for a peak rate of 50 Mflop/s.

The 40 Mhertz Sun SuperSPARC processor has a 16 Kbyte internal primary data

cache (four-way set-associative). The transfer rate from the primary cache is one word per

clock cycle. Since three instructions may be issued simultaneously (floating point, integer,

load/store), the theoretical peak performance is 40 Mflop/s, and the bandwidth between

the cache and the CPU is 40 Mword/s. To improve memory performance, a direct mapped

secondary cache of one Mbyte has been added.

Recently the "Alpha" RISC processor was announced by Digital Equipment Corpora-

tion. It features a full 64-bit design and a 150 to 200 Mhertz clock, depending on model.

Since it can perform a floating point operation in every clock period, its theoretical peak

performance is cited as 150 to 200 Mflop/s. However, in spite of its much faster peak speed,

the size of the Alpha's primary cache is the same as that of the i860: only eight Kbytes.

Like other recently announced RISC processors, the bandwidth (and latency) to and

from main memory for the DEC Alpha is significantly lower than that of the cache. The

Alpha can load or store a word from main memory only about every four clock periods (peak

rates). Thus the ratio between achievable internal cache and main memory bandwidths

is at least four. The latency for main memory accesses on the Alpha is about 20 clock

periods, which is more than six times that of cache accesses (three clock periods). In an

attempt to deal with this disparity, the DEC Alpha, like some others, features support

for a second-level external cache, typically consisting of about one Mbyte of SRAM. The

peak rate for loads and stores from second-level cache is one word every two to three clock

periods, and the latency is roughly eight clock periods.

This information is summarized in Table 1. It is interesting to note that the Linpack

100 x 100 performance of an individual system appears to be well estimated as one-half

of the minimum of the memory bandwidth and peak performance figures. The only sys-

tems that achieve significantly greater rates than this estimate are the DEC Alpha and

HP PA-RISC processors.But thesesystemsbenefit from an external cache,which is suf-
ficient to completely contain the Linpack 100× 100 benchmark. Indeed, their Linpack
performancefiguresare roughly half of the secondarycachebandwith figures(60 Mword/s
and 99 Mword/s, respectively). On larger benchmarksthat exceedthe sizeof the exter-
nal cache,and which better reflect modern large-scalecomputing, the actual performance
rates of thesetwo processorsare lower. For example,the performanceof the Alpha on the
PERFECT suite is 18 Mflop/s. Note that this figure is much closerto half of its main
memory bandwidth figure (37.5 Mword/s). No Linpack 100 x 100 figure was available
for the SuperSPARC;however,its Linpack 1000x 1000figure of 22 Mflop/s is in general
agreementwith this rule.

4. Dollars and Sense

Oneadvantageof RISCprocessorsover vector processors is that they obtain respectable

performance on loops with apparent or real recursions, or with short loop lengths. It is

well known that the presence of these features in a code significantly reduces the perfor-

mance that a vector processor can achieve on it. However, the experience of most vector

programmers is that these difficulties can usually be remedied without major revision to

the code. On large two or three-dimensional applications, for example, it is often possible

to avoid these difficulties by vectorizing in another dimension. Once this tuning has been

done, the vector systems generally achieve rather high performance. On the NAS Parallel

Benchmarks, for example, a Cray Y-MP processor achieves (with minor tuning) over 65

Mflop/s on all eight tests, and it exceeds 175 Mflop/s on all but two tests [7]. 175 Mflop/s

is 53 percent of the theoretical peak rate of a Y-MP processor.

The principal reason that the Cray Y-MP generally sustains such a high percentage

of its peak performance is that its main memory bandwidth is well matched to its peak

computation rate. The total main memory bandwidth of the eight-processor Y-MP is

4 Gword/s, which is actually a greater figure than its peak computing rate, which is 2.6

Gflop/s. By comparison, the main memory bandwidth of the 128-processor Intel iPSC/860

system is 2 Gword/s, which figure is only about one fourth of its peak computation rate

(7.6 Gflop/s). When the Intel main memory bandwidth figure is reduced by roughly half

to account for interprocessor communication, the resulting ratio of four is roughly what

is observed in overall system performance between these systems on the NAS Parallel
Benchmarks [7].

On the other hand, when the price of systems is considered, the RISC systems do

reasonably well, even when comparing main memory (i.e. not cache resident) performance

statistics. The Intel iPSC/860 system, for instance, costs only about one-sixth that of an

eight-processor Y-MP system. Thus the total main memory bandwidth per dollar of the

Intel iPSC/860 is three times that of the Cray Y-MP. On the NAS Parallel Benchmarks,

the sustained performance per dollar of the Intel is on a par with the Y-MP. Were it not for

for other factors, such as the relatively immature state of compilers for the Intel system,

and its limited interprocessor network bandwidth, it is likely that the Intel would surpass

the Cray in this measure also. NAS Parallel Benchmark figures are not yet available for

7

parallel systems based on the DEC Alpha. But if we consider a workstation system, and

take 18 Mflop/s as typical of sustained performance, it is clear that the Alpha workstation,

which can be purchased for as little as $25,000, is considerably less than a tenth as costly

as a Y-MP processor that sustains 180 Mflop/s

In short, it appears that even with the shortcomings addressed in this paper, RISC

processor systems still deliver sustained performance per dollar that is now competitive

with the vector systems on most applications, and much better on some. Nonetheless, one

can ask whether their sustained performance rates (as well as their sustained performance

per dollar figures) might have been even better had the designers placed greater emphasis

on main memory bandwidth, as opposed to increasing the performance on data in the
primary cache.

5. The World of Large-Scale Scientific Computing

Some large-scale scientific programs can be expected to run quite well on the current

RISC systems. Clearly those that have been written from scratch on a cache-based work-

station by expert programmers can be expected to run at somewhat higher performance

rates than those ported from other systems without significant alteration. Another class of

applications that will perform well on RISC-based systems, relative to vector systems, are

those with loops that are not readily vectorizable, or those with short inner loops. Others

that can be expected to do well are codes that utilize libraries, such as LAPACK [2], which

have been highly tuned for cache-based systems, among others.

Some scientific codes will achieve excellent performance on RISC computer systems

simply because they have the good fortune to consist of very well localized, and therefore

cache-efficient, computations. For example, a vortex roll-up simulation code developed

by the author [8] behaves very well in cache memories, because the computations involve

high precision arithmetic operations that are naturally very well localized. By comparison,

this code does not run efficiently on a Cray Y-MP, due principally to unavoidably short

inner loop lengths. For these reasons, a multiprocessor implementation of this program on

the Intel iPSC/860 system out-performs one processor of a Cray Y-MP when only eight

i860 nodes are utilized. Thus on this application the Intel system achieves a much higher

performance rate per dollar than the Cray.

Another fortunate class of applications are those based on dense matrix computations,

which can be structured to run efficiently in cache systems [13, 14, 15]. Indeed, the im-

pressive performance achieved by the LAPACK library on a variety of systems is due in

large part to the utilization of these blocking techniques.

Many other important scientific applications are not so fortunate. For one thing, large-

scale scientific codes are not often based on efficient, assembly-coded library routines. This

is regrettable, since a significant number of them could utilize such libraries. Hopefully

the current movement to standardize the calling sequences to such libraries will induce

greater numbers of programmers to adopt them. Second, many large applications have

previously run on vector systems, where inner loop vector lengths and strides are the

principal performance issues. Data locality issues were simply not considered when these

8

codeswere written. Third, quite a few large scientific codesemploy advancednumerical
algorithms that do not feature high levelsof data locality, and no amount of superficial
codemanipulation will changethis.

We have already discussedthe impact of the divide operation on large-scalescientific
applications. Now let us investigate the impact of the cachedesignon thesecodes. To
that end, four types of numerical algorithmswill be examinedto seewhether they can be
expectedto run well on cache-basedRISC processorsystems(1) as is, (2) after process-
ing by intelligent cacheblocking software tools that may be available in the future, (3)
after significant revision by expert programmers,and (4) after the wholesalesubstitution
of advanced,cache-efficientalgorithms in important compute-intensiveroutines. In the
following, by an "expert programmer", we will mean a programmerwho is highly skilled
in tuning scientific codeson cache-basedcomputersand is generallyknowledgeablein nu-
meric techniques,but who doesnot necessarilyhavespecializedexpertisein state-of-the-art
numerical algorithms.

6. Ordering Loops
The order in which loops are ordered can significantly affect the sustained performance

of this code on a cache-based system. Consider, for example, the following code fragment:

DIMENSION A(15,1000), C(15)

110

C

120

DO 120 I --I, 15

S = O.DO

DO II0 J --i, I000

S = S ÷ J * A(I,J)

CONTINUE

C(I) --S

CONTINUE

This code design makes good sense on a vector system, since the inner loop vector length

is large and the stride of accesses in the inner loop is an odd number.

However, on a cache system this might not be the best approach, because of the nonunit

stride accesses in the A array. It might be better to write this code as follows:

100

c

DIMENSION A(I5,1000), C(15)

DO I00 I = I, 15

C(I) = O.DO

CONTINUE

DO 120 J = 1, I000

DO 110 I = 1, 15
C(I) = C(I) + J * A(I,J)

II0 CONTINUE

120 CONTINUE

This code design features unit stride inner loops, which are definitely better for cache

systems. The fact that the inner loop vector length is only 15 has no adverse consequence

on a RISC system. On the contrary, this limited vector length is an advantage on the

RISC system -- the C vector is cache-resident and has a very high level of data re-use.

Indeed, while the first variant runs nearly twice as fast than the second on a Cray Y-MP,

the opposite is true on a node of the Intel iPSC/860.

In this case, it is possible that a "smart" compiler could perform this loop interchange.

In other cases this is not likely, but a skilled programmer may well be able to make such

changes to existing codes for improved performance on cache-based systems. However, it

must be acknowledged that such revision requires significant effort and nontrivial expertise,

and it may not be practical for very large "dusty deck" codes. Software tools, such as those

now being developed at Rice University [9] and Stanford [16], may eventually be able to

assist in this effort. But effective changes may require changes over multiple subroutine

boundaries, rather than merely within the context of a single nested loop as above (consider

the case where the loop lengths are not constants as above but instead are subroutine

arguments).

Indeed, the current state of the art in this field is indicated by the fact that these

software tools are not yet able to successfully optimize Gaussian elimination with partial

pivoting (GEPP). This operation can, however, be manually blocked for improved cache

performance. In fact, a hand-tuned, cache-efficient implementation of GEPP has been

included in the LAPACK library [2]. Thus it appears unlikely that truly effective and

highly automatic software tools of this sort will be available for several years.

Referring to the questions at the end of section five, we conclude that while effective

loop interchanges can be made with some effort by an expert programmer, and it may be

possible that compilers of the future could make such changes in some cases, it is not likely

that compilers or other automatic tools could make these changes in all cases. Without

such changes, the performance of many codes is likely to be suboptimal.

7. Blocking Transposes

At the heart of many two and three-dimensional scientific applications, similar opera-

tions must be performed in each dimension. On vector computers these are often imple-

mented as a sequence of calls to subroutines that are virtually identical, except for the
dimension in which multidimensional arrays are accessed.

It is clear that a Fortran routine which accesses arrays by other than the first dimension

will not perform well on a cache-based system, since such accesses have nonunit stride. One

solution is to revise the design of such programs to perform array transpositions between

the computational steps, so that computations can always be done with unit stride data

accesses. The resulting code may even be simpler than before, since often the same unit

10

stride computational routine can be employed in each dimension. It should be pointed

out, however, that in some cases the performance of the resulting code is not much better

than the original, since there is insufficient computation to offset the cost of the transpose

operation. But in other cases it is profitable to make such a change.

In any event, even if the code is substantially revised to a design that interleaves com-

putation and array transposition steps, one must still utilize an array transposition routine

that has been optimized for a cache-based system. Consider the following straightforward

Fortran routine to transpose a matrix:

c

100

110

C

SUBROUTINE TRANS (M. N. A, B)

DIMENSION A(M.N), B(N,M)

DO 110 J = 1, N
DO 100 I ffi 1, M

B(J,I) = A(I,J)

CONTINUE

CONTINUE

RETURN

END

This loop will not run well on a cache-based system (unless the entire array fits in

cache), due to the nonunit stride accesses in the B array. Nor does it do any good to

interchange loops, since then the A array has nonunit stride accesses.

It is possible to perform transpositions in a cache-efficient manner by "blocking" the

transpose: one fetches two opposing blocks from main memory to cache (note that each

column of these blocks can be fetched with unit stride), transposes each block in cache, and

then returns each of the transposed blocks to the opposite location. This is best described

as follows, where Aij and Bi: denote blocks small enough that both can simultaneously fit
in cache:

All A12 A13 A14

A21 An A23 A24

As1 A32 A33 A34

A41 A42 A43 A44

Ai, A_I A_I A_I

A_2 A_2 A_2 A_2

A_3 A_z At A_z

AI4 A_, At, A_4

Another efficient scheme for transposing arrays in a hierarchical memory system is based

on Fraser's algorithm. This scheme is described in [3].

Let us consider again the questions listed at the end of section five. First of all, it

is clear that multidimensional array codes, particularly those that have heretofore run on

vector computers, will not run well unmodified on cache-based systems. Second, while it

is conceivable that at some time in the future, compilers and other software tools may be

available to automatically transform such codes into more cache-efficient designs, that time

11

is at least severalyearsaway.Third, while it is possible,evennow, for expert programmers
to make such transformations, it is laborious to do so and may not be practical for a
very large program. Fourth, it is indeedalgorithmically possibleto perform this type of
computation in a mostly unit stride, cache-efficientmanner;however,it is not entirely clear
that all suchcodeswould benefit from this change.

8. Slow Fourier Transforms

The next example to be examined is the computation of the one-dimensional fast Fourier

transform (FFT). Unfortunately, many FFT algorithms in the literature, if implemented in

a straightforward manner, include such undesirable features as large, power-of-two memory

strides. These strides also hamper vector computer performance. Fortunately, there are

variant FFT algorithms that do not involve power-of-two memory strides, and which in

fact can be implemented with exclusively stride one memory accesses [4]. These algorithms

have been used on vector computers for some while.

However, even these algorithms typically have one feature that is undesirable for cache

systems: the principal main memory arrays X and Y are both accessed roughly t times to

perform a 2t-point FFT. Is it possible to reduce the number of times these data arrays

are accessed? Yes, as it turns out. However, no amount of loop restructuring or other

superficial manipulation of the code will accomplish this. Instead, a completely different

technique for performing the FFT must be employed. This algorithm can be sketched as

follows, where the size of the input complex vector is n = nln2 words, and where the cache

is assumed to hold at least 4bmax(nl, n2) words. See [3] for details.

.

.

.

Consider the data in main memory as a nl x n2 complex matrix in column-major

(Fortran) order. Fetch the data b rows at a time into the cache. For each batch of b

rows, perform b individual n2-point FFTs on the b × n_ complex array in cache.

Multiply the resulting data in each batch by certain roots of unity: the element

fetched from location (j, k) in the original complex matrix is multiplied by e -2'_ijk/n.

Transpose each of the resulting b x n2 complex matrices into a n2 × b matrix, using

the cache, and store the resulting data in main memory. Store successive batches of

data in successive contiguous sections of main memory.

. Consider the resulting data in main memory as a n2 x nl complex matrix. Fetch the

data b rows at a time into the cache. For each batch of b rows, perform b individual

ha-point FFTs on the b x nl complex array in cache, and return the resulting b rows

to the same locations in main memory from which they were fetched. The result is

a correctly ordered discrete Fourier transform.

With this algorithm, the principal main memory data arrays need only be accessed two

times, no matter what the size of the FFT. Note that all of the individual ha-point and

nrpoint FFTs are performed entirely in the cache.

12

35

30

25

20

15

!0

5

0
10 _ 102 103 104 105 10 e

Lensth

Figure 2:i860 Performance on a Library FFT (Mflop/s)

To summarize this discussion, let us again return to the four questions at the end of

section five. First of all, it is clear that the FFT as often implemented is clearly inap-

propriate for cache-based computer systems. Second, it appears unlikely that foreseeable

software tools will be able to make more than superficial changes to most codes imple-

menting FFTs. Third, even expert programmers are unlikely to be able to make more

than modest improvements in such codes. Fourth, a moderately cache-efficient algorithm

is known for one-dimensional FFTs; however it is not well known outside the FFT field.

It is true that the FFT is an operation that is often available in vendor-supplied libraries,

and thus one could argue that individual scientists do not need to be concerned these

issues -- they can merely use library routines. However, many scientists regrettably have

incorporated their own "home-grown" FFT routines into their program files, in order to

make their codes more easily portable between systems. Also, it is important to note

that vendor-supplied FFT routines in many cases do not employ an advanced algorithm.

For instance, the FFT routine supplied by Intel on the iPSC/860 employs a conventional

algorithm that is efficient only for transforms small enough to fit into cache (see Figure

2). Of the major RISC vendors, only IBM appears to have implemented an advanced FFT

algorithm [1] similar to the one described above.

9. Iterative Methods

Iterative methods are increasingly important in solving large, sparse systems of linear

equations. They are typically found at the center of economically important, large-scale

computations. The most important methods in use today include the multigrid and Krylov

subspace methods, of which the conjugate gradient method is the prototype. The book

of Golub and Van Loan [10] is a good reference for these methods. Unfortunately, these

13

methods cannot be restructured to work well with memoryhierarchies.
The problem is to solve the equation Ax = b where A is a given sparse nonsingular

matrix and b a given vector. The set of nonzero elements of A is generally much too large

for cache, since it typically requires many Mbytes of storage. The conjugate gradient and

related methods compute a sequence {xk} of vector iterates that converges to the solution

The nature of these algorithms is that all of A must be accessed from memory, once per

iteration, before any of it is accessed again, so the computation proceeds at main memory

rather than cache speeds. In the case of the Krylov subspace methods, a dot product

involving the vector Axk has to be computed before xk+a can be. Thus, the matrix-vector

product at one iteration cannot be pipelined in any way with the matrix-vector product
at the preceding or following iteration.

With the multigrid methods, data on fine grids is accessed only one or two times before

computation passes to coarser grids. These grids thus represent a bottleneck analogous to
the dot products in Krylov subspace methods.

At the present time, there is a significant amount of research activity in this field, and

there is some hope for improved algorithms in the future. Improved preconditioners, for

example, may reduce the number of iterations required for the conjugate gradient method

to converge. Domain decomposition methods, which work by solving a sequence of smaller

systems of equations for subsets of the unknowns, use much smaller sparse matrices that

may fit in cache. There is also some hope for "block iterative methods," which may provide

the power of the iterative schemes in a more cache-efficient design. Some other iterative

methods, such as the Jacobi, Gauss-Seidel, and successive over-relaxation methods, may be

organized to work well with memory hierarchies. In general, however, these latter methods

are much slower and less reliable than multigrid and Krylov subspace methods. In any

event, none of these alternate schemes can be automatically derived from the codes for
other iterative methods.

Referring again to the four questions of section five, we conclude that codes employing

iterative methods will not perform well on cache-based computer systems. Unfortunately,

it appears that these difficulties cannot be helped by superficial code modifications, even

those made by expert programmers, much less by automatic software tools. And while

there is some hope that these difficulties can be surmounted by substituting advanced
algorithms, these schemes are as yet experimental.

10. Crystal Balls

The problem of quantifying data locality in various types of scientific applications is a

very important and timely one. This problem is closely related to the question of whether

an application can be efficiently implemented on a distributed memory multiprocessor.

Indeed, some distributed memory parallel systems are being designed to treat distant

memory as simply another level of the memory hierarchy, of which the lowest levels are

the registers and internal cache. Clearly this problem deserves a great deal of study by

the research community, and the answers will only be evident after many scientists have

14

studied many different applications.

We have seen that in each of the four cases studied above, there are either known

algorithms and implementation techniques that are better suited to cache memories, or else

there is some hope that advanced algorithms now being investigated will provide scientists

with a cache-efficient alternative in the future. It might turn out that it is always possible

to find algorithms and implementation techniques that are reasonably cache-efficient, in

the sense that data once fetched into the cache can be profitably accessed numerous times

before being returned to main memory. In that case the RISC vendors' assumption that

caches are broadly effective in sustaining high performance will be upheld.

On the other hand, it might be that there remain a significant number of important

scientific applications which feature an unavoidably low degree of cache-level data locality.

For these problems, RISC systems with large ratios in performance between data in cache

and main memory will have much less of an edge in sustained performance per dollar,

compared with other architectures, and may even be surpassed in this statistic by other
designs.

While there is some uncertainty on the long-term outcome on this question, in the near

term (within the next two or three years), the answer is considerably clearer: a significant

segment of important scientific applications will not perform at optimal rates on current

cache-based RISC systems. Thus even at this point in time, it seems essential that designers

of cache systems be reasonably modest in their designs.

An analogy with the history of vector computing is instructive in this regard. One of

the early vector systems, the CDC 205, featured superior performance on codes with long,

unit stride loops. Other vector systems, notably the Cray-1 and Cray X-MP, featured a

more flexible design, with more modest assumptions about typical vector lengths. These

latter systems, while they could not compete with the CDC 205 on specially selected,

highly-tuned codes, exhibited respectable performance across a much wider spectrum of

real-world applications. This was a principal reason that they ultimately prevailed.

11. Conclusions and Recommendations

Many in the scientific computing community have observed that both the workstation

market and the high-end supercomputer market have the same design goal: a high level of

sustained performance on real scientific and engineering applications. These same persons

have further argued that the massive investment being made in RISC microprocessors will

force supercomputer vendors to employ these "commodity" processors in their systems.

However, this may not necessarily happen -- it may turn out that the workstation

market has sufficiently distinct requirements from high-end supercomputing that each will

pursue its own path in processor development. Indeed, it is interesting to note that of the

principal contenders in the latest generation of highly parallel supercomputers, only Intel

and Cray are relying on commodity RISC processors for high-performance floating-point

computation. Others, including Thinking Machines, nCUBE, Kendall Square Research,

Fujitsu and Meiko, are relying on custom processors for this purpose.

If this divergence does occur, then much of this discussion may prove moot. On the

15

other hand, if it becomes clear that the requirements of these two markets are converging,
then it is essential that RISC processor designers carefully consider these issues. It is also

essential that scientists who traditionally have used vector systems for their computations

understand in greater detail the implications of RISC processors on their programs. Oth-

erwise both the high-end supercomputing market and even the workstation market itself

may suffer from less-than-optimal sustained performance on many important applications.

While one could voice concern about several features of current RISC processors, two

stand out and have been discussed in length above: (1) the large cost of divide operations,

relative to the cost of adds and multiplies, and (2) the limited bandwidth between pro-

cessors and main memory, relative to the bandwidth between processors and cache, or in

other words overly optimistic ratios between cache and main memory performance. Both

are problems of degree rather than fundamental concept.

What does the author recommend? First of all, I suggest that the cost of an integer

divide operation be no more than about ten times the cost of an integer add or multiply,
and that the cost of a floating point divide operation be no more than about ten times the

cost of a floating point add or multiply. This ratio is higher than the ratio on Cray systems

(four), but it seems acceptable even for applications that make heavy use of divisions.

With respect to main memory bandwidth, I certainly urge designers of future systems

to make this as large as possible, recognizing that there will always be design costs and

trade-offs that will limit this. What about the balance between bandwidth and latency

to main memory, as compared with bandwidth and latency to cache? A factor of two

appears tolerable, and a factor of four is not fatal. But I believe that ratios beyond this

level will not add significant value for many large scientific codes, and whatever resources

were devoted to such caches could more profitably be employed in seeking ways to obtain

higher bandwidth and lower latency to main memory.

One additional useful design point can be deduced as follows. Just as programmers of

vector systems can be expected to tune their codes so that inner loops are reasonably long

and so that strides are not powers of two, it is reasonable to ask some tuning effort by

programmers of cache-based RISC systems. For example, it is reasonable to assume that

with some effort many scientific application can be revised to feature mainly unit stride

accesses (for instance by employing computational steps interleaved with array transpo-

sitions). In return, it seems reasonable to insist that future RISC-based systems be able

to access vectors of contiguous main memory data into the processor without significant

slowdown. For instance, it seems reasonable to insist that a unit stride DAXPY loop run

equally fast for data in cache as for long vectors that cannot be held in cache.

It may be that fundamental changes can be made to the design of the cache systems in

RISC processors to make them more broadly effective for large-scale scientific computation.

Some have suggested special instructions that load data from main memory, at a stride,

directly into the registers (the Intel i860 has an instruction along these lines). Another

possibility is to make changes to the basic cache organization, such as the number associa-

tivity classes. The author is not sufficiently knowledgeable about processor architectures

to comment on these suggestions, but hopefully discussions such as this will highlight the

16

issues involved and lead to improved designs in the future.

If designers of RISC processors really want to get serious about supporting the highly

parallel supercomputer market, they ought to consider adding features to facilitate very

high speed, low latency interprocessor communication (including fast synchronization). At

the present time, manufacturers of parallel systems that employ RISC processors utilize

separate custom-designed devices to provide this functionality, and the cost of this custom

circuitry is emerging as a dominant factor in the total cost of the system. Even in a work-

station system, such features could prove valuable, for example as a basis for implementing

multi-workstation, networked parallel computing.

In any event, it is a pity that there is not a greater degree of mutual communication

between the RISC processor community and the scientific computing community, especially

the parallel scientific computing community. Clearly both communities have much to gain

from such interaction. This article is written with the hope of fostering this dialogue.

Acknowledgments

The author wishes to acknowledge a significantcontribution by Robert S. Schreiber

of the RIACS organization at NASA Ames Research Center. Others who have made

valuable suggestions to thismanuscript include E. Barszcz of NASA Ames; R. Fatoohi, H.

Simon, V. Venkatakrishnan and S. Weeratunga of Computer Sciences Corp.; P. Bjorstad,

currently visiting RIACS; A. Gupta of Stanford University; A. Karp of Hewlett-Packard;

S. Oberlin of Cray Research, Inc.; B. Parady of Sun Microsystems, Inc.; M. Humphrey

of Silicon Graphics, Inc., D. Scott of Intel Scientific Computers; and D. Smitley of the
Supercomputing Research Center.

17

References

[1] R. C. Agarwal, and J. W. Cooley, "Fourier Transform and Convolution Subroutines

for the IBM 3090 Vector Facility", IBM Journal of Research and Development, vol. 30
(1986), p. 145- 162.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorenson, The LAPACK Users'

Guide, SIAM, Philadelphia, 1992.

[3] D. H. Bailey, "FFTs in External or Hierarchical Memory", Journal of Supercomputing,
vol. 4 (1990), p. 23 - 35.

[4] D. H. Bailey, "A High-Performance FFT Algorithm for Vector Supercomputers", In-

ternational Journal of Supercomputer Applications vol. 2 (1988), p. 82- 87.

[5] D. H. Bailey, "Unfavorable Strides in Cache Memory Systems", RNR Technical Report

RNR-92-015, NASA Ames Research Center, 1992.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,

R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V.

Venkatakrishnan, and S. K. Weeratunga, "The NAS Parallel Benchmarks", Intl. Journal

of Supercomputer Applications, v. 5, no. 3 (Fall 1991), pp. 63 - 73.

[7] D. H. Bailey, E. Barszcz, L. Dagum and H. D. Simon, "NAS Parallel Benchmark

Results", Proceedings of Supercomputing '92, IEEE, p. 386 - 393.

[8] D. H. Bailey, R. Krasny and R. Pelz, "Multiple Precision, Multiple Processor Vortex

Sheet Roll-Up Computation," Technical Report RNR-90-028, NAS Applied Research

Branch, NASA Ames Research Center, October 1992.

[9] S. Carr and K. Kennedy, "Compiler Blockability of Numerical Algorithms", Proceedings
of Supercomputing '92, IEEE, to appear.

[10] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins, Baltimore,
1989.

[11] K. Lee, "On the Floating Point Performance of the i860 Microprocessor", Technical

Report RNR-90-019, NAS Applied Research Branch, NASA Ames Research Center,

October 1990. Also in the Intl. Journal of High Speed Computing, to appear.

[12] D. Pase, "MPP Programming Model", Cray Research, Inc. 1992.

[13] R. S. Schreiber, "Block algorithms for Parallel Machines," in Martin Schultz, editor,

Numerical Algorithms for Modern Parallel Computer Architectures, IMA Volumes in

Mathematics and Its Applications, vol. 13, Springer-Verlag, New York, 1988, p. 197 -
207.

18

[14] R. S. Schreiberand G. Shroff, "On the Convergenceof the Cyclic Jacobi Method for
Parallel Block Orderings," SlAM Journal on Matrix Analysis and Applications, vol. 10
(1989), p. 326 - 346.

[15] R. S. Schreiber and C. Van Loan, "A Storage Efficient WY Representation for Prod-

ucts of Householder Transformations," SIAM Journal on Scienti6c and Statistical Com-

puting, vol. 10 (1989), p. 53 - 57.

[16] M. E. Wolf and M. S. Lam, "A Data Locality Optimizing Algorithm", Proceedings of

the 1991 SIGPLAN Conference on Programming Language Design and Implementation,
ACM, June 1991.

19

